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Time-Series Analysis of a Collective Variable in 
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We perform a maximum-entropy frequency analysis of the occupation-density time 
series for a recently proposed totalistic cellular automaton rule in five dimensions. 
This new information complements partial knowledge coming from winding 
number measurements. We discuss the possible phenomenology of the model in 
terms of our findings. 
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The emergence of collective behavior in high-dimensional cellular automata 
(CA) has been established recently by Chat6 and Manneville (1'2) and 
confirmed by others. (3-5) This result apparently challenges droplet-type 
arguments by Bennett et  aL (6) which limit drastically the possible patterns of 
stable collective states in dimensions d >~ 2 to be at most period-two. In par- 
ticular, refs. 1-5 report simulations of many high-dimensional CA models in 
which the average (collective) variable settles to a period-three (or four) cycle, 
and more mysteriously, quasiperiodic behavior. An additional interesting 
feature of the models is the competition between the mean-field tendencies in 
high dimensions and the correlation buildup one expects in deterministic 
systems. 

In this short communication we analyze the frequency spectrum of the 
time series corresponding to the collective variable of one of the models 
reported in the literature. We find that this variable is well-described by a 
Fourier-type series with a fundamental frequency which apparently is no t  

simply related to the intrinsic time scale of the system. Our results are con- 
sistent with winding-number measurements of the times series, and clarify and 
extend what has been reported in the literature. For example, we determine 
how many terms in the series are necessary for a satisfactory reconstruction 
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of the return map. We close the paper with a discussion of the possible 
phenomenology of the system, again clarifying what has been discussed by 
other authors. 

The model we consider was originally proposed in ref. 1. It is a 
five-dimensional, deterministic two-state (zero or one) cellular automaton. 
At each time step a local field hi is computed for each site, over the site itself 
and its ten nearest neighbors; this corresponds to the five-dimensional 
von Neumann zone. The sites are updated synchronously, and given the 
value one if their local field is 5 ~< hi ~< 8, and zero otherwise. As it has been 
established that the system is robust to the choice of boundary conditions, 
we have chosen periodic for simplicity. Updating the system at integer time 
steps defines an intrinsic time scale t = 1. 

A time series for the eollective variable 

Z s(t) 
sites 

has been recorded for t > 5000, and the corresponding frequency spectrum 
has been found for several system sizes L. The most probable spectrum was 
determined using the Bayesian maximum entropy method, in which, under 
very general conditions, a spectrum's prior probability is assigned to be 
proportional to the exponential of its configurational entropy. Bayes' theorem 
is used to incorporate the data and provide a posterior probability distribu- 
tion of feasible spectra. The displayed spectrum is the one which maximizes 
this probability. For convenience, the Hartley spectrum (v~ was the quantity 
that was determined. From it, it is easy to reconstruct a Fourier amplitude 
spectrum, which is what is shown here. (See ref. 8 for further discussion of the 
details of this method.) 

The main result is given in Fig. 1, which shows the frequency spectrum 
for 1000 time steps of S(t) and a lattice of l0 s sites. The spectrum consists of 
a large fundamental mode at f--~0.3476 _+ (2), with second and third har- 
monics showing at f ~  0.3, 0.04. These and higher harmonics appear reflected 
about the Nyquist critical frequencyf = 1/2. The frequency spectrum for other 
system sizes is essentially identical. Our best estimate for the fundamental 
frequency, obtained from a 10,000 point time series, is f ~  0.34805 +_ (5), 
which has been confirmed by winding number measurements. (9) Information 
about a fit of the noise-reduced time series to the form 

S(t) = 2 C, cas(nft + qk,) (1) 

is given in Table I. Our results, showing that the time series is well described 
by a periodic signal of frequency apparently irrationally related to the itera- 
tion time, are consistent with the iterated-map use of the term "quasiperiodic." 

We have been successful in reconstructing the skeleton of the model's 
return map ( S ( t + l )  vs. S(t)). This requires three or more of the terms 
in the Fourier-type expansion, as one term yields an ellipse and two a 
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Fig. 1. Frequency spectrum of the 5-dimensional cellular automaton, showing the fundamen- 
tal frequency f ~ 0.348 and its harmonics. Amplitude and phase data are also given in Table I. 

Lissajous-like curve. A six-term fit essentially reproduces the original return 
map, minus the thermodynamic-like noise. 

We close this short communication with two proposals on how to 
approach analytically the phenomenon of collective behavior in this 
model. One is that the time series could be a transient, closely following 
(shadowing) a limit cycle of integer period. If this is so, Jen's studies (1~ of 
shifting mechanisms in limit cycles for one-dimensional CA could be relevant. 
However, analogous studies in high dimensions have never been undertaken. 
The corresponding limit cycle, if it exists, might be quite long. In fact, if we 
estimate (see, for example, ref. 11 and references therein) the length of a typi- 
cal limit cycle or transient to be of the order of the square root of the number 
of microstates, a typical limit cycle for this system might be of length 2 5~176176176 

It is, however, more likely that the fundamental frequency is irrationally 
related to the intrinsic time scale of the system. This is supported by the 

Table I. Frequency (divided by fo~0.348),  amplitude Cn 
and phase ~.  of the first six terms in the series expansion 
of the t ime series for the 5d cellular automaton 

f/(fo) Cn ~n 

1 5.1288e--2 --2.2382 
2 1.4398e--2 1.8585 
3 5.1907e--3 --0.1057 
4 3.3630e--3 1.3908 
5 1.8045e-- 3 -- 1.4838 
6 7.6711e--4 2.2257 
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fact that this frequency appears to be independent of system size. In this 
case, a continuous-time description of the evolution of the collective modes 
might be necessary. It is not  clear how this description would be implemented 
for a synchronously updated system, but the simplicity of the behavior of the 
collective variable suggests that the mechanism producing the time series can 
be elucidated. In addition, the discrete second-order time dynamics of a single 
order parameter  can yield an irrational period. ~12~ This is an appealing alter- 
native to the two order parameters proposed in refs. 1 and 2, which seems 
more  appropriate to describe continuous quasiperiodic behavior with two 
independent frequencies rather than one (see ref. 13, chapter III). In this 
respect, it is well known that a one-variable iteration such as the circle 
map ~3"14) is sufficient to produce quasiperiodic behavior in the sense used in 
the iterated-map literature. 
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NOTE ADDED IN PROOF 

Bennett  et  al. (Ref. 6) specifically exclude irrational periods from their 
proof. In equat ion (1) of the present paper, cas x = cos x + sin x. 
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